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ABSTRACT

In this report we present the results of our research activities during the past year
(FYI 972-1973) on holographic grating research. A large portion of this work was performed
using rigorous vector diffraction theory; therefore, we have included the necessary theory in
this report. The diffraction efficiency studies begun in the first year (FY 1971-1972) were

continued using programs based on a rigorous theory. The simultaneous occurrence of high
diffraction efficiencies and the phenomenon of double Wood's anomalies is demonstrated
along with a graphic method for determining the necessary grating parameters. Also, an
analytical solution for a grating profile that is perfectly blazed is obtained. The performance
of the perfectly blazed grating profile is shown to be significantly better than grating pro-
files previously studied. Finally, we describe a proposed method for the analysis of coarse
echelle gratings using rigorous vector diffraction that is currently being developed.
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1. INTRODUCTION

During the past two years our research activities have been directed at the analysis, de-
sign, and evaluation of diffraction gratings produced by holographic techniques. During the
first year of this contract (1971-1972) we applied approximate equations, derived from vec-
tor diffraction theory, to the study of diffraction gratings with different groove profiles. In
particular, we studied echelette profiles that have rounded edges. This profile is very similar
to those produced using holographic methods. For these studies computer programs, based
on the approximate theory, were developed and tested to determine their regions of valid-
ity. The programs were then used to study the efficiency characteristics to be expected from
holographic gratings. We were able to show that holographic gratings can be designed so that
nearly all of the incident radiant energy is contained in a preselected diffraction order for a
particular wavelength. It was also shown that these high blaze efficiencies occur in the pres-
ence of a double Wood's anomaly.

During the following year of this contract (1972-1973) we continued the above studies.
The earlier studies had shown that the computer programs based on the approximate theory
worked very well for gratings with shallow grooves but that the approximations were not
valid for gratings with deep grooves. To avoid a duplication of effort, we obtained a set of
computer programs based on rigorous vector diffraction theory and valid for deep echelette
gratings. These programs were made available by Professor A. R. Nereuther at the University
of California, Berkeley. The programs are based on the works of Dr. K. A. E. H. Zaki' and
Dr. H. A. Kalhor.2 Throughout this report the results obtained from the use of these pro-
grams will be clearly distinguished from those obtained using our own programs.

The Berkeley programs were first modified so that they were easier to use. Also, an
attempt was made to modify the programs so that they could analyze gratings with an arbi-
trary profile. However, this effort was not successful as the results obtained from the pro-
grams were no longer always reliable. Thus, the latter modifications were removed from the
programs.

The study of the design of blazed diffraction gratings was extended to include an analyti-
cal solution to the problem. It was shown that it was possible to design a grating profile so
that 100% of the incident energy was contained in a preselected diffraction order. In addi-
tion, the grating was now well blazed over a broad wavelength interval as opposed to a single
wavelength as was obtained in the previous study mentioned earlier.

It became apparent, through close contact with our contract monitor and his associates,
that the needs of NASA-GSFC far exceeded the capabilities of the programs based on the
approximate theory as well as the Berkeley programs in their present form. This was pri-
marily due to the very deep gratings and the large number of real diffraction orders resulting
from coarse echelle gratings that were used in the vacuum ultraviolet. In order to analyze
these gratings we directed all of our recent efforts toward the formulation of an efficient



method by which the equations derived from rigorous vector diffraction theory could be

applied to the analysis of coarse echelle gratings as required by NASA. The salient features

of the rigorous theory are discussed in the next section. In Section 5 we outline a method

that can be used for the study of coarse echelle gratings. A more complete mathematical

derivation of the equations required for the study is presented in Appendix B,C, and D.
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2. VECTOR DIFFRACTION FROM DEEP GROOVE

DIFFRACTION GRATINGS

The grooves in a diffraction grating are said to be deep when the groove depth approaches

or is greater than the wavelength of the incident radiant energy. To analyze such a grating a

rigorous theory that allows the amplitude coefficients of the diffracted fields to be a func-

tion of position within the grating profile must be used. It is apparent that the assumption
that the amplitude coefficients are constant within the grating groove will become less valid

as the grating depth increases. In fact, this is exactly why the approximate theory fails when

used to analyze deep gratings. Below we describe a rigorous theory that can be applied to

the analysis of deep echelle gratings.
Consider a perfectly conducting, planar reflection grating that is irradiated by a mono-

chromatic plane wave. We wish to determine the amount of energy appearing in each of the

diffracted orders. This is done by using Maxwell's electromagnetic field equations and apply-

ing the appropriate boundary conditions.

The total electromagnetic field is defined as the incident field plus the diffracted fields

Total field = (Incident field) + (Diffracted fields).

This applies to both the electric field E as well as the magnetic field H. We assume a right-

handed coordinate system such that the y axis is perpendicular to the plane of the grating,
the x axis is perpendicular to the grating grooves, and the z axis is parallel with them. The

grating profile is given by

y = f(x). (1)

An electromagnetic wave with any arbitrary state of polarization can be decomposed into

two waves linearly polarized at right angles to each other. Therefore, we consider two cases:

In the first the electric field vector is parallel to the grating grooves and is called the E-
parallel state of polarization. In the second the magnetic field vector is parallel to the grating

grooves and is called the H-parallel state of polarization. This decomposition reduces the

vector equations to scalar equations. On the surface of the grating the boundary conditions

to be obeyed by each state of polarization are given by

(a) E-parallel

ETOT(X,Y) tan  -0. (2)

ly = f(x)

That is, the tangential component of the total electric field on the surface of the grating

must be zero.
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(b) Il-parallel

aHTOT(x,y) (3)

all y = f(x)

which says that the normal derivative of the total magnetic field on the surface of the grat-
ing must be zero.

With the use of Maxwell's equations and the application of the above boundary condi-
tions it is possible to calculate the desired diffraction efficiencies. Below we have briefly
described the procedure used to perform this calculation. The procedure we describe is
exactly the same as that used by Zaki and Kalhor.

The first step is to calculate the field due to an infinitely long alternating line current by
using Maxwell's equations. This information is then used to determine the fields due to an
infinite array of equally spaced line currents. The result of this calculation is then used to
formulate a suitable Green's function that describes the problem. In formulating the Green's
function the currents are assumed to be excited by a plane wave incident at an angle 0i. The
Green's function so obtained is a function ofx,y and x',y' separately. That is, the Green's
function describes the fields at the point x,y due to an infinite line current at the point
x',.v'. Due to the choice of the phasing of the individual line currents, the Green's function
exhibits the following symmetry

G(x+ma,y; x'+pa,y') = exp(-ikma sin0i) G(x,y; x',y') (4)

where a is the grating constant and m and p are positive or negative integers. We note that
for a normally incident plane wave (Oi = 0) the Green's function is strictly periodic in both
variables x and x'.

Having obtained the Green's function we then use Green's identity to obtain the dif-
fracted fields. The surface integral that appears in Green's identity is evaluated by consider-
ing the volume enclosed by the surfaces shown in Fig. 1. The surface S, is along the grating
surface. The surfaces Ss and S 6 (not shown in the figure) are parallel to the plane of the
paper and are the front and rear surfaces of the closed volume. It can be shown that the
contributions due to Ss and S6 are equal and opposite as are the contributions due to S 2
and S3 . The contribution due to the integration along S 4 can easily be determined. There-
fore, we find that the field at any point within the volume that is enclosed by the different
surfaces is given by the surface integral along the grating profile. For the E-parallel polariza-
tion we obtain

Ed(X.y') = exp(+ikx'sin0) G(x,y;x',y') 8aE(x,y) dl (5)
1an
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S4

3 2 Fig. 1. Choice of surfaces of integration.

x x+a

where l'd(X',y') is the diffracted field, and if Ei(x,y) is the incident field then the total
electric field E(x,y) is given by

E(x,y) = Ei(x,y) + Ed(X,y). (6)

The integration is along the grating profile with the normal directed into the volume as
shown in Fig. 2.

S 
A

I I -

x x+a

Fig. 2. The surface normal is directed into the vol-
ume enclosed by the surface used to evaluate the
surface integral.



For the H-parallel polarization we obtain the result

lHd(x',y') = exp(+ikx sin0) [(x,y) G(x,yx ,y') dl. (7)

As was the case with Eq. (5), Hd is the diffracted field, and the total field H is given by the
sum of the incident field plus the diffracted fields

H(x.y) = Hi(x,y ) + Hd(x,y). (8)

In Eqs. (5) and (7) the elementary length (dl) for the contour integral along the grating
profile may be converted to an integral along x by observing that

dl = 1 + (d x))]dx. (9)

The limits of integration for the variable x are from x = 0 to x = a.
It is also useful to note that the normal derivative is given by

a [ ldf(x) 2 df(x) ) a + 0)a- + d -- x / - +  j. (10)

We may now write Eqs. (5) and (7) in a more convenient form by adding the respective
incident fields to both sides and invoking the boundary conditions on the surface of the
grating. For the E-parallel case we find that

Ei(x',J(x')) = + exp(ikx' sin0i) G(x,f(x); x',f(x')) 1 + dx

SE(xy) dx,
y=Jx)

and for the H-parallel polarization we obtain

1li(x',f(x')) = H(x',J(x')) - exp(ikx' sin0i)

x a G(x,yx',y') [ d +(f(x) 2 HI(xy) dx (12)
y=f(x)
yl =f(x')

In Eqs. (II) and (12) the unknown quantities are aE/an and H. Thus, these two integral
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equations can be solved for either aE/an or H on the surface of the grating. These quantities

will be needed later in the analysis.

'The Green's function G(x.y; x'.v') appearing in lqs. (5) and (7) may be represented in

various forms. The one form particularly suited to our needs is

G(xy;x' , - exp(-ikx sinOi) exp[-i27rm(x-x')/alexp(+ik cosOm Lv-Y'I)

2ia mk cosOm

(13)

Also, the diffracted field can be represented as a discrete angular spectrum of plane waves

Ed(x',y') = Am exp[ik(x' sin0m +y' cos0m)]. (14)

m=--

In both Eqs. (13) and (14) the index (m) labels the diffraction order. Equation (14) de-

scribes a plane wave whose wave normal makes an angle Om with the y axis and where the

time dependence is given by the complex exponential exp(-iwt).

It is important to understand that the expansion coefficients Am are constants (indepen-

dent of x',y') only in the region away from the grooves of the grating. Inside the grooves

they depend on both x' and y' as has been shown by Zaki and Kalhor. In the approximate

theory of vector diffraction these coefficients were assumed to be constant everywhere.

We will use the expansion of Eq. (14) for Ed only in the region above the grating grooves.

When Eqs. (13) and (14) are used in Eq. (5) we find the following expressions for the coeffi-

cients A ,,

Am = f exp[-ik(x sinOm +f(x) cos0m)]
2ak cos0m o

X [ + (df(x) 2]V2 aE(x,y) dx (15)
L 3 dxy=f(x)

for the E-parallel case. For the H-parallel case we obtain

( +i a dfx a a
= H(x,y) + -

m 2ak cosOm, \ dx ax ay

X exp[-ik(x sinOm +y cosOm) I Y=fl dx (16)
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where Bm is the expansion coefficient appearing in the discrete angular spectrum representa-

tion of 01i d

IId(',y') i = B,, exp[ik(x' sinOm +y' cosOn)]. (17)
m=--

In both Eqs. (15) and (16) the total fields E and H appear in the integrands. These are the

values that these fields assume on the surface of the grating profile. The angular spectrum

expansions with constant coefficients given in Eqs. (14) and (17) cannot be used for them.

These fields may be found by solving the integral equations given in Eqs. (11) and (12) as

mentioned previously.

In summary, the diffraction amplitudes Am and Bm are obtained as follows. We first

solve the integral equations given in Eqs. (11) and (12) to obtain the fields aE/an and H on

the surface of the grating. These quantities are then used in Eqs. (15) and (16) to determine

the amplitude coefficients Am and Bm
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3. MAXIMUM DIFFRACTION EFFICIENCY USING

RIGOROUS DIFFRACTION THEORY

As reported in the 1971-1972 final report the problem of maximum diffraction efficiency

was studied by using the computer programs based on the approximate theory. The amount

of energy in a preassigned diffraction order was maximized by optimizing the initial solu-

tion. It was also shown that the values of 0i and X/a required to maximize the solution were

the same conditions required to produce a double Wood's anomaly. We refer the reader to

Fig. 5.3, p. 26, of that final report. We reproduce that curve here, in Fig. 3, for ease of

reference. The plot shown in Fig. 3 is for the E-parallel state of polarization. However, the-

figure is not complete because the calculation was not performed for the H-parallel polariza-

tion. This is because the approximate theory was not able to produce reliable results for the

H-parallel case. The calculation was later repeated using the Berkeley programs for both

states of polarization. Below, in Fig. 4, we have reproduced the results of this calculation as

they were first presented in the December 1972 monthly report. From Fig. 4 we see that

1.0
S0.9

= 0.8
e 0.7

0.6

0.5
S0.4

E 0.3
o 0.2z

0.1
0.0

0.50 0.60 0.70 0.80 0.90 1.00

Wavelength-to-grating-period ratio (X/a)

Fig. 3. Normalized irradiance )/a for the -1st order versus the ratio V/a for the E-
parallel state of polarization. The angle of incidence is -19.47122.
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parallel (Fig. 4a) and H-parallel (Fig. 4b) states of polarization.



the calculation based on the rigorous theory corroborates the results obtained from the
approximate theory for the E-parallel case. In Fig. 4b we see that the efficiency curve for
the H-parallel case is a maximum at the same value of X/a as was obtained for the E-parallel
polarization. It is also apparent that the irradiance in the - 1st order quickly drops to lower
values on either side of the blaze condition X/a = 0.6667 for the H-parallel case. Thus, we
see that the grating is well blazed but only at a single wavelength.

The occurrence of high blaze efficiencies simultaneously with the phenomenon of double
Wood's anomalies has also been reported by McPhedran.3 In our studies this condition was
obtained by optimizing the solution predicted by a geometrical model as reported in the
monthly report dated 11 August 1972. At that time we reported on a graphical method for
determining the grating parameters required to produce single and double Wood's anomalies.
That method is presented below and we further show that the conditions required to pro-
duce a double Wood's anomaly are also the conditions necessary for one of the diffracted
orders to be diffracted back along the direction of the incident beam. In fact, at the condi-
tions that produce a double Wood's anomaly there is always one beam diffracted in the
direction of the incident beam.

From the grating equation

mA
sin0i + sinOm -

a

where Oi is the angle of incidence, 0 m is the diffraction angle for the mth order, m is the
diffraction order, X is the wavelength, and a is the grating constant, the ratio X/a is solved
for and plotted as a function of the angle of incidence for a given order m. The value of
sin0 m is set equal to ±1.0 because 0 m = ±90.00 when the mth order is evanescent. The curve
so produced defines the values of X, a, and Oi required to produce a single Wood's anomaly.
The intersection of two curves defines the conditions required to produce a double Wood's
anomaly. Also, curves that lie above a given point on the graph indicate the real or homo-
geneous orders present for a given set of parameters. Curves below a given point represent
inhomogeneous or evanescent orders. A plot showing the conditions required to produce
single and double Wood's anomalies is shown in Fig. 5.

If we now take the grating equation and set 0 m = Oi and plot the ratio X/a as a function
of 0i for a fixed order m, we obtain Fig. 6. These curves then give the conditions necessary
for the mth order to be diffracted back along the direction of the incident beam. Under
these conditions the mth order is in autocollimation (Littrow mount).

If we now superimpose Figs. 5 and 6 we obtain Fig. 7. This graph clearly shows that at
the conditions required to produce a double Wood's anomaly there is always one diffraction
order that is autocollimated. It is also apparent that there are more than one set of condi-
tions for which a given order can be used in autocollimation in the presence of a double
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Fig. 5. Conditions for single and double Wood's anomalies.
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Fig. 6. Conditions required for autocollimation of rth order.
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Fig. 7. Superposition of Figs. 5 and 6.

Wood's anomaly. From these graphs the conditions required to obtain a high blaze effi-

ciency for a grating operated in the autocollimation mode can be easily obtained. We are

currently preparing a paper for the Journal of the Optical Society of America reporting

these findings.
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4. MAXIMUM DIFFRACTION EFFICIENCY - AN ANALYTIC SOLUTION

The design of gratings that operate with a high blaze efficiency can also be persued ana-
lytically. This approach requires that the equations derived from vector diffraction theory
be solved for the grating profile f(x) that will produce the desired blazed conditions. This
procedure would be extremely difficult to do using the equations derived from the rigorous
theory. Thus, the equations obtained from the approximate theory are used, and the results
are checked to insure that the f(x) so obtained is consistent with the rigorous theory. In
deriving the expression for the grating profile f(x) we impose the constraint that all of the
amplitude coefficients be exactly zero except one, the preselected blaze order denoted as
the pth order. Thus,

A, = S6p for all m. (18)

The grating profile obtained from this study is given by

f(x) = -[p(X/a)/2 cos i]x. (19)

The blaze angle is given by

a = are tan[-p(X/a)/2 cos0i]. (20)

The angle of incidence is

Oi = arc sin[p/(X/2a)], (21)

and the apex angle 0~ is given by

= 90.0 - a. (22)

This grating profile and the related parameters are shown in Fig. 8.

S=f (x)

0 a x
0

Fig. 8. Sketch of the profile f(x) for maximum blaze efficiency
as predicted by theory.
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The predicted grating profile shown in Fig. 8 was tested using the computer programs

based on the approximate theory. The results indicated that the profile produced a grating

that was perfectly blazed (100%) for both states of polarization in a preselected diffraction

order when the grating was used in autocollimation. Furthermore, the grating was blazed

over a wavelength interval of approximately 18.0 nm. The groove depths used in the above

study varied from less than one wavelength to 3.3 wavelengths. However, the energy check

revealed that even for the deepest grating the computer programs based on the approximate

theory were operating perfectly. This result suggests that the approximate theory had

allowed us to predict a grating profile for which the amplitude coefficients were not a func-

tion of position within the grating grooves. This surprising result suggests that we (1) test

the above profile with the Berkeley programs based on the exact theory and (2) investigate

whether the above profile is also a solution of the exact equations when subjected to the

same constraints.
In trying to test the above profile on the Berkeley programs we found that these pro-

grams would not run with the special profile and the constraint of autocollimation. How-

ever, by varying the angle of incidence slightly, the Berkeley programs would run. The

energy check revealed that the rigorous programs were not operating as well as might be

expected. Under these conditions the rigorous programs indicated that 92% of the incident

energy was contained in the preselected order (the -4th order was chosen) for the Eparallel

state of polarization. It is believed that if the Berkeley programs had been able to operate

under the ideal conditions, an energy check closer to unity would have been obtained to-

gether with more energy appearing in the desired order.

At this point we must mention that we have often encountered difficulty in getting the

Berkeley programs to operate in a number of cases. Also, these programs and the approxi-

mate programs are not able to analyze some of the gratings in which NASA-GSFC has ex-

pressed interest. For these reasons we have embarked on a new method for obtaining a

solution to the rigorous equations. In Section 5 of this report we describe these efforts in

some detail.
We now focus our attention on the investigation of whether the profile f(x) of Fig. 8 is

also a solution of the exact equations. We start with the condition given in Eq. (18) and

slightly modify it to read

Am = 6mp all m and y > 0. (23)

This modification sets a severe restriction on the behavior of the amplitude coefficients in

the spaces above and within the grating grooves. It allows for no variation ofAm as a func-

tion of position within the grating grooves.

If the conditions expressed in Eq. (23) are used, then the diffracted fields can be ex-

pressed as an angular spectrum of plane waves with amplitude coefficients that are constant

everywhere. The diffracted fields are therefore given by Eqs. (14) and (17).This means that
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in the equations relating the amplitude coefficients Am and Bm with the fields on the sur-

face of the grating (Eqs. (15) and (16)) we may use the angular spectrum representation for

the fields under the integral sign. Under these conditions the rigorous equations become

much simpler, and we have shown (see Appendix A) that the special grating profile given by

Eq. (19) is also predicted by the equations of the exact theory. We intend to publish these

findings in the Journal of the Optical Society of America.
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5. A NEW METHOD FOR THE SOLUTION OF THE

RIGOROUS THEORY EQUATIONS

One of the gratings that NASA-GSFC has expressed an interest in is the coarse echelle

grating used in the vacuum ultraviolet. In general, these gratings tend to be very deep with

respect to the wavelength of the radiant energy. Also, it is not uncommon for more than

100 real diffraction orders to be present for a coarse echelle as opposed to only a few real

orders as is usually the case for an echelette grating. As a result, it is not possible to analyze

coarse echelle gratings by using existing computer programs. In addition, it is not possible to

simply increase the number of diffraction orders that current programs can analyze because

the programs soon become too large for the computer (CDC 6400). Thus, a new method of

analysis must be formulated for echelle gratings. Below we outline a new approach for cal-

culating the amplitude coefficients by using rigorous vector diffraction theory. For this

method we hope to obtain a more convenient set of equations that can even be used when

there are a large number of orders present. In Appendices B, C, and D a mathematical de-

scription of important parameters can be found.

Before discussing the method of solution, we want to point out some of the difficulties to

be expected in applying the rigorous vector diffraction equations to the study of echelle

gratings.
First, a computer can perform operations only on discrete or sampled values of a func-

tion. The number of sampled values required to adequately represent a given function de-

pends on how quickly the function varies: slowly varying functions require fewer sampled

values than rapidly varying functions. Therefore, a function of two independent variables,

k(x,x'), may require a very large two-dimensional matrix to store all of the sampled values

required to represent k(x,x') if the function is rapidly varying.

In the echelle problem for the E-parallel polarization, we wish to solve Eq. (11) for the

unknown quantity aE(x,f(x))/an. This quantity (matrix of sampled values) is then used in

Eq. (15) to calculate the unknown amplitude coefficients for the diffracted fields. In order

to solve Eq. (11) for the unknown quantity aE(x,f(x))/an we must first calculate the ele-

ments of the matrix representing the Green's function G(x,f(x); x',f(x')) as given by Eq.

(13). However, in Eq. (13) the index m is the diffraction order and appears in one of the

exponentials. For large values of m (up to 100) this exponential will be a rapidly oscillating

function and, therefore, the Green's function will require a very large matrix to contain all

of the necessary sampled values. A simple calculation shows that for 100 real orders the size

of this matrix alone exceeds the available core storage of many large computers.

One way of overcoming the above storage requirement is to express the Green's function

in terms of functions that are more slowly varying than the plane wave representation Eq.

(13). Another possible representation for the Green's function is in terms of Hankel func-

tions. This representation converges rapidly for gratings with a period much greater than the
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wavelength of the radiant energy. This condition is easily met with coarse echelle gratings
but not necessarily with echelette and holographic gratings. Therefore, the Hankel function
representation is of limited use in our work.

It is not unusual for functions that are rapidly varying in the spatial domain to be much
smoother in the spatial frequency domain. For such functions the analysis can be performed
in the frequency domain by using smaller matrices. In the work presented below we have
chosen to perform the calculations in the frequency domain with the aim of reducing the
sizes of the required matrices. This is done by expressing all of the quantities in terms of
their complex Fourier series expansions. This method has an additional benefit due to the
uniqueness of the Fourier series. Namely, that the plane wave and the Hankel function
representations of the Green's function (as well as any other representations) must have the
same Fourier representation. This means that the Fourier method can be used for the analy-
sis of echelettes as well as coarse echelle gratings if the matrices are of reasonable dimensions
in the case of the latter.

To illustrate the proposed method of analysis we note that Eq. (11) is of the form

h(x') = k(x,x')g(x)dx, (24)

wlcere

h(x') Ei(x',f(x'))

k(x.x') - i exp(+ikx' sini)G(x,f(x); x',f(x'))

g(x) 1 + \ T/ aE(xf(x,) (25)

and

E(x,f(x)) = Ei(xJfx)) + Ed(x,f(x)).

We then expand each of these functions in tern-ns of their Fourier series representations

h(x') hk exp(+i2rkx'/a)
k=--

k(x.x') k., exp(-i27rnx/) exp(+i2nrjx'/a) (26)

g(x) - g exp(+i27rlx/a).
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The complex expansion coefficients are then given by

hk =a h(x') exp(-i27rkx'/a)dx'

k, n - 2 k(x,x') exp(+i2rnx/a) exp(-i21rjx'/a)dxdx' (27)

gI a g(x) exp(-i2rlx/a)dx.

Substitution of Eq. (26) into Eq. (24) yields

hk exp(+i27rkx'/a) = a k1n exp(-i2nrnx/a)
k- 0 n=- =-

X exp(+i27rix'/a) gl exp(+i2wlx/a)dx. (28)

After some manipulation Eq. (28) becomes

> (hk) exp(+i2nrkx'/a) = (a knn) exp(+i27rjx'/a). (29)
k=- . n=-

For Eq. (29) to be valid for all terms in the expansion we must have

S(h ) exp(+i27rjx'/a) = a kngn) exp(+i21rix'/a)
=-. =- n=-.

or

hi = a k,ngn . (30)
n=--

Equation (30) is a matrix equation where h and g are column matrices and k is a two-

dimensional matrix. The size of the matrices is determined by the values of and n beyond
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which the contributions of the series for h and k are less than the specified error. That is, n
and j cannot assume the infinite limits expressed above but must be limited to some maxi-
nmum value. The maximum values are chosen such that the errors due to neglecting ternis
beyond these maximum values are less than a specified amount.

We wish to determine the unknown expansion coefficient gn in Eq. (30). This can be
done because we can calculate the coefficients hi and k, because they involve known quan-
tities. In Appendix B we have derived the equations from which the kIn coefficients are to
be calculated. In Appendix C we derive the equations for the coefficients hi.

Note that i and n can assume negative as well as positive values. If we denote the mini-
mum values as JMIN and NMIN and the maximum values as JMAX and NMAX then the
number of values that i and n will assume are given by J and N, respectively, where,

.I JMAX - JMIN +

N NMAX - NMIN + 1. (31)

In general, we will have J = N. This means that we can regard.Eq. (30) as either a matrix
equation or as N simultaneous equations. Solution of the matrix equation will require that
the inverse matrix k -' be calculated. In any case, once the coefficientsg, are solved for the
function, g(x) is determined. Note that g(x), as defined in Eq. (25), also appears as the
unknown in the equation for the amplitude coefficients Eq. (15), namely,

A = k c exp[-ik(x sin0m +f(x) cosOm lg(x)dx. (32)

We now expand the complex exponential in terms of its Fourier series representation

e,a(x) exp[-ik(x sin0m +f(x) cos0m)] = er,n exp(-i2rnx/a). (33)
n=--

Thus,

A = (k cos) em.n exp(-i2rnx/a) gl exp(+i2irlx/a)dx
m O n=-- 1=--

2ak-cos0m n= = ermnglan
mn=-- 1-
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Am = k cosOmemngn (34)

Equation (34) is also a matrix equation where A and g are column matrices and emr, n is a

two-dimensional matrix. The coefficients em,n are to be calculated from

ermn = em (x) exp(+i2mrnx/a)dx. (35)

Explicit expressions for the er, n coefficients are derived in Appendix D. Once these coeffi-

cients have been calculated we can then calculate the unknown amplitude coefficients Am

using simple matrix multiplication.

We note that the method of analysis is the same for the H-parallel state of polarization

except that g(x) would now be proportional to the magnetic field and k(x,x') would repre-

sent the normal derivative of the Green's function.



APPENDIX A

CONSISTENCY OF SPECIAL BLAZED GRATING PROFILE WITH
EQUATIONS DERIVED FROM THE RIGOROUS THEORY

The amplitude coefficients for each of the diffracted orders are given by

A,, = 2k cos0 exp[-ik(x sinOm + f(x) cosom) ]

X [ I + (d{x) 2 ' aE(xf(x)) dx .A)dx an (Al)

We assume a plane wave expansion for the diffracted fields of the form

Ed(x,.v) = Am exp[ik(x sin0, +y cos0m) ] . (A2)
m=--

We also note that

Sdf(x) +  + 2] df Wx)

If we use Eq. (A3) to operate on the total electric field and we substitute into Eq. (Al), we
obtain after considerable manipulation

S dx sini + cosOi exp[-ikf(x)(cosOn + cos0i)] exp(-i27rnx/a)dx

S Am a df(x sinO - cosOm) exp[-ikf(x)(cosOn  cosOm)]
m=-O d

X exp[-i27r(n - m)x/aldx + 2a cosOm 6mn (A4)

In deriving the equation of the grating profile we imposed the constraints

A,,, = 5Mp, for all m

0,, Oi" (A5)
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These constraints are then used to simplify Eq. (A4). The left-hand side (LHS) of the equa-

tion then becomes

LHS = - sin0i a df(x) exp(-i2kf(x) cos0i - i2rpx/a)dx
Sdx

-cosi f exp(-i2kf(x) cos0i - i21rpx/a)dx. (A6)
0

The right-hand side (RHS) reduces to

RHS = f(a) sin0i +a cos0i. (A7)

When we match coefficients for sin0i in Eqs. (A6) and (A7) we obtain

f(a) = df(x) exp(-i2kf(x) cos0i - i2irpx/a)dx. (A8)

The grating profile f(x) is given by

A( p(X/a) (A9)
f(x) = - 2CO i x."

Substitution of Eq. (A9) into Eq. (A8) for the value x = a yields the identity f(a) = f(a).

Thus we see that Eq. (A9) is a solution of the rigorous equations under the constraints

expressed by Eqs. (A2) and (A5).
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APPENDIX B

EXPANSION COEFFICIENTS k,n

In Section 5 of the text we defined

k(x,x') -i exp[+ikx' sinOi]G(x,f(x); x',f(x')) (B1)

where G(x,f(x); x',f(x')) is the Green's function given by

exp(+ikx sin~i)
G(xf(x); x',f(x')) = xpikx sin2ia

X exp[-i27rm(x - x')/ai exp(+ik cosOm f(x) - f(x')l
. k cos0m

m=-

(B2)

Recall that we expressed k(x,x') in terms of its Fourier series expansion

k(x,x') = k, n exp(-i27rnx/a) exp(+i2rjx'/a). (B3)
n=- j=-o

Therefore, the expansion coefficients are given by

a
k, n - a k(xx') exp(+i2nx/a) exp(-i2ix'/a)dxdx'. (B4)

In order for these coefficients to be calculated we insert Eq. (B2) into Eq. (B1) and the

resulting expression is used in Eq. (B4).
In order for the calculation to be completed we must know the equation of the grating

profile f(x).
For this derivation we assume f(x) to be the profile shown in Fig. B 1. The actual grating

profile is given by

Ax, O < x < xt
(x) = Ax (a x), < x < a(B5)

a - x,
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Sy=f(x)

Region I
I Region II

x1 a

Fig. Bl. Grating profile f(x).

where A is the slope of f(x) in Region I (A = tana). After much calculation we find the

expression on page 26 for the Fourier expansion coefficients k,, for the profile shown in

Fig. B1.



26

K. C12 e+i2n(n-j)x/a - e+i (1/P j/a)x 1
K. =  (Cm/4 ) -1 e

,n m=- (a-jP1m) (a-nP m))j P)
2 12 12

a 11 e-i27r(1/P1 -n/a)xl - 1 e+i2(n-j)xl/a 1

a-jP (a-nP ~) /(m) (n-j) 1

e-ikBaCosm e22 +i27rt(a/P22)-j)(e -i2iyYx - 1)

a-jP 22 Y1

a p ) e + i 2  / P ) - j / a ) x  e-i2-n/a)xi
-

a-nP In))

+ikBaCosO 21 ) 11 (m)
a _ j p ) m n r

a2 ( (() (m)
( i2(1/P m)-n/a)x1 - +i2n(a/ 1 )(e-i22 1-1

11(m) -ikBaCosO

+ e - e e+i2n(a/Pl(7-j)xl/(a-xl)

a(a-jp11 ) Y3

2 a  e-i2T(a/P ()-n) - -i2w(1/Pm)-n/a)x1

(m) +ikBaCose (M)

a(a jP )12 ) nP22 -e

x e+i2(1/P )-j/a)x1 _ e+i 2 j(a/Px) -j)xl/(a-xl) (e-i 2 rY4 a - e-i 2 4Xl)

Y4

p (m) (m)
n22 2-i2 (j-n)x/ x22 (- +i2h5 - ea

a-n2' (l -e+i2y 6 )+ -e+ ij))
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where,

1 n 1 +j+ a
I na a

1 ( J a x ) xi
12 22 122

y 1 n 1 + + a _

2 a x a Xl x

1 n 1 ja(
3( a (m)(ax1 aa-x

21 11

4 1 n + 1 jx 1

SX1 jx1 a

22  22

nx x

(a 1 1 j)6 C 7 a im)
21 21

SinO. ACosO -'

( _ m m
11

p(S) sine. ACosm -

P (m) li m m

12 X a

Sine. BCosO -

p ( n + + m

22a

A = Tan a, B = -Tan 8.
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APPENDIX C

EXPANSION COEFFICIENTS hi

Using Eq. (27) of the text for the expansion coefficients hj we have

hj = f h(x') expl-i21rix'/a]dx' (C1)
a 0

where h(x') is the incident electric field

h(x') - exp[-ikx' sin0i] exp[-ikf(x') cos0i]. (C2)

We use the same grating profile f(x') defined in Eq. (B5) of Appendix B. In this way we find
the following expression for the Fourier expansion coefficients

h = l exp(-i2rx) - 1 + (-)exp(-ikBa cosOi)

X [exp(-i2ga) - exp(-i2rn3xl) (C3)

where

a (sinOi/X + A cos0i/X + i/a)

I3 (sinOi/A - B cosJi/ + i/a).
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APPENDIX D

EXPANSION COEFFICIENTS em,n

Using Eq. (35) of the text for the expansion coefficients em,n we have

1 fa
em, = e, (x) exp(+i2mnx/a] dx (D 1)

where

er(x) - exp[-ik(x sinOm + f(x) cosOm )]. (D2)

We use the same grating profile f(x) defined in Eq. (B5) of Appendix B. In this way we
obtain the following expression for the Fourier expansion coefficients

em(n = 1[a lexp(-i27raox 1 ) - I] + exp(-i2rBa cosOm )

X [exp(-i27ra) - exp(-i2nrfx,) (D3)

where

a (sinOm/X +A cosOOm/X- n/a)

S- (sinOm / - B cosOm / X - n/a).
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